Human adaptation to gradual probability and outcome change
McCormick, Erin N.1, Cheyette, Sam2, Gonzalez, Cleotilde1

1Dynamic Decision Making Laboratory, Social and Decision Sciences, Carnegie Mellon University, USA
2Brain and Cognitive Sciences, University of Rochester, USA

QUESTION
How do humans adapt their choices to changing conditions in the environment?

INTRODUCTION

- Human decision behavior in dynamic environments is important, ubiquitous and not yet well understood.1
- Recent work has found both a stickiness effect that hinders adaptation, when initial experiences most impact later choices and inhibit adaptation to change2,3 and a recency effect that facilitates adaptation, when recent experiences most impact later choices and improve adaptation to change.2,4
- This work has also found initial evidence of an asymmetry in adaptation for different directions of change.5,4
- This asymmetry could hinder or facilitate adaptation through stickiness or recency mechanisms: e.g., a changing option that starts off as the preferred option and becomes the less preferred would hinder adaptation through the stickiness effect, but not through a recency effect, and vice versa for a changing option that starts off as less preferred.
- However past work also focused on full feedback conditions2 (where participants learn the outcome of the chosen and the forgone option), when partial feedback is more ecologically valid3, and all studies have focused on changing probabilities as the dynamic feature.

In two experiments we studied repeated, consequential decisions from experience in an uncertain environment with two separate changing features: outcome probabilities (Experiment 1) or changing outcome values (Experiment 2).

METHOD

For 100 trials, participants chose between two buttons labeled “A” and “B”, receiving outcome feedback based on feedback condition (see Figure 1). Buttons represented one of two uncertain gambles: the stationary option or the non-stationary option.

For all conditions in both experiments, the non-stationary option matched it. For all conditions in both experiments, the stationary option was a gamble.

In both experiments, participants were randomly assigned to a 3 (Direction of Change: Increasing, Decreasing, Constant) X 2 (Feedback: Partial, Full) between-subjects experimental condition.

RESULTS

Example of non-stationary choices across participants over 100 trials, by Direction of Change and Feedback conditions. (Left) Proportion of non-stationary choices across participants over 100 trials, by Direction of Change and Feedback conditions. (Right) Proportion of maximizing choices across participants Before and After the switch in option relative expected values, by Direction of Change and Feedback conditions.

Figure 1. Sample trials with Partial (left) or Full Feedback about the outcomes of the two options presented to participants. Partial Feedback provided outcomes only for the chosen option.

Figure 2. Probability of receiving the high outcome (Experiment 1, left side) and value of the high outcome (Experiment 2, right side) for the non-stationary option as a function of current trial and Direction of Change.

DISCUSSION

- Experimental condition and Before/After indicators regressed on per trial maximizing choices with mixed-effects logistic regression, (random intercepts for participant).
- Direction of change asymmetry in Experiment 1, higher log-odds of choosing maximizing option in Decreasing than Increasing conditions, for both Feedback conditions.
- Direction of change asymmetry in Experiment 2 for Partial Feedback conditions, again, higher log-odds of choosing maximizing option in Decreasing than Increasing conditions, but no significant difference in Full Feedback conditions.

ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation Award Number 1114642 to Cleotilde Gonzalez. Correspondence concerning this article should be sent to Cleotilde Gonzalez, Social and Decision Sciences, Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh, PA 15213, E-mail: coty@cmu.edu. Visit http://www.cmu.edu/ddmlab for related and additional research on decision making in dynamic environments.

REFERENCES

1. McCormick, E. N., Cheyette, S., & Gonzalez, C. (2016). The dynamics of choice in a changing world: first-order observation of a change, e.g., changing outcome values, or second-order observation, e.g., changing probabilities) is just as important as spectrum of available information (partial versus full feedback) in facilitating or hindering adaptation to change.


3. Avrahami, J., Kareev, Y., & Fiedler, K. (2016). The dynamics of choice in a changing world: first-order observation of a change, e.g., changing outcome values, or second-order observation, e.g., changing probabilities) is just as important as spectrum of available information (partial versus full feedback) in facilitating or hindering adaptation to change.

4. McCormick, E. N., Cheyette, S., & Gonzalez, C. (2016). The dynamics of choice in a changing world: first-order observation of a change, e.g., changing outcome values, or second-order observation, e.g., changing probabilities) is just as important as spectrum of available information (partial versus full feedback) in facilitating or hindering adaptation to change.


